List
Hale, Alina, Klaus-D Gottschaldt, Gideon Rosenbaum, Laurent Bourgouin, Matthieu Bauchy, and Hans M?hlhaus. 2010. "Dynamics of slab tear faults: Insights from numerical modelling." Tectonophysics, 483 (1): 58-70. Elsevier, http://www.sciencedirect.com/science/article/pii/S0040195109002996.


Hale, Alina, Klaus-D Gottschaldt, Gideon Rosenbaum, Laurent Bourgouin, Matthieu Bauchy, and Hans M?hlhaus. 2010. "Dynamics of slab tear faults: Insights from numerical modelling." Tectonophysics, 483 (1): 58-70. Elsevier, http://www.sciencedirect.com/science/article/pii/S0040195109002996.
"Tear resistance at the edge of a slab is an important parameter controlling the evolution of subduction zones. However, compared with other subduction parameters such as plate strength, plate viscosity, plate thickness and trench width, the dynamics of tearing are poorly understood. Here we obtain a first-order understanding of the dynamics and morphology of subduction zones to resistance during tear propagation, by developing and using a novel computational modelling technique for subducting slabs, with side boundaries described by visco-plastic weak zones, developing into tear faults. Our 3D model is based upon a visco-plastic slab that sinks into the less dense mantle, generating poloidal and toroidal flows. The asthenospheric mantle field is static and only develops flow due to the subducting slab. We use the finite element code eScript/Finley and the level set method to describe the lithosphere to solve this fluid dynamics problem. Our results show the importance of tear resistance for the speed of trench migration and for shaping the final geometry of subduction systems. We show that slab tearing along a weak layer can result in a relatively straight slab hinge shape, while increasing the strength in the weak layer results in the curvature of the hinge increasing substantially. High tear resistance at the slab edges may hinder rollback to the extent that the slab becomes stretched and recumbently folded at the base of the domain. Tear resistance also controls whether the subducting lithosphere can experience accelerating rollback velocities or a constant rollback velocity."

Leave a Reply

Your email address will not be published. Required fields are marked *

  Posts

1 2 3 9
November 11th, 2019

Designed crack-resistant cesium aluminoborate glass heals under hydration

Oxide glasses are disordered molecular structures and typically show poor intrinsic ductility. As a consequence, these materials are brittle. Although […]

September 18th, 2019

Predicting optimal glass compositions

For glass scientists, the periodic table is their oyster—virtually all elements turn into a glass if quenched fast enough. Yet […]

August 27th, 2019

$1.5 million grant to design a 3D-printable CO2-neutral concrete

A team of UCLA engineers has received a $1.5 million grant from the National Science Foundation to develop 3-D-printed concrete […]

July 30th, 2019

Overcoming the brittleness of glass

From windows to tableware to fiber optics, oxide glasses are everywhere you look. Oxide glasses (typically silica) are used frequently […]

July 29th, 2019

Universal density-stiffness scaling laws: From cellular solids to atomic networks

Many natural materials offer unusual mechanical performances. Natural cellular materials like bones simultaneously exhibit low weight and superior mechanical properties […]

July 21st, 2019

Postdoc Position in Machine Learning and Additive Manufacturing

The Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab) at University of California, Los Angeles (UCLA) is seeking some outstanding […]

July 19th, 2019

Multiple postdoc positions in atomistic simulations of disordered materials

The Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab) at University of California, Los Angeles (UCLA) is seeking some outstanding […]

July 19th, 2019

Multiple postdoc positions in machine learning and materials informatics

The Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab) and Laboratory for the Chemistry of Construction Materials (LC2) at University […]

June 22nd, 2018

Multiple Ph.D. positions in computational material science

The Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab) at University of California, Los Angeles (UCLA) is seeking some outstanding […]

June 10th, 2017

Irradiation- vs. vitrification-induced damage in materials

Vitrification and irradiation can both result in the disordering of materials, that is, in the loss of the structural periodicity […]