List
Masoero, E, M Bauchy, E Del Gado, H Manzano, R Pellenq, F Ulm, and S Yip. 2015. "Kinetic simulations of cement creep: mechanisms from shear deformations of glasses." Paper presented at CONCREEP 10. 555-564.


Masoero, E, M Bauchy, E Del Gado, H Manzano, R Pellenq, F Ulm, and S Yip. 2015. "Kinetic simulations of cement creep: mechanisms from shear deformations of glasses." Paper presented at CONCREEP 10. 555-564.
"The logarithmic deviatoric creep of cement paste is a technical and scientific challenge. Transition State Theory (TST) indicates that some nanoscale mechanisms of shear deformation, associated with a specific kind of strain hardening, can explain the type of deviatoric creep observed experimentally in mature cement pastes. To test this possible explanation, we simulate the shear deformations of a colloidal model of cement hydrates at the nanoscale. Results from quasi-static simulations indicate a strain hardening analogous to that postulated by the TST approach. Additional results from oscillatory shear (fatigue) simulations show an increase of deformation with number of loading cycles that is consistent with the observed creep. These findings indicate that nanoscale simulations can improve our current understanding of the mechanisms underlying creep, with potential to go beyond the logarithmic creep and explore the onset of failure during tertiary creep."

Leave a Reply

Your email address will not be published. Required fields are marked *

  Posts

1 2 3 9
January 27th, 2020

Climate-Smart Cement is Being Developed in California

Cement and concrete (the most manufactured materials in the world) account today for about 8 percent of the world’s total […]

November 11th, 2019

Designed crack-resistant cesium aluminoborate glass heals under hydration

Oxide glasses are disordered molecular structures and typically show poor intrinsic ductility. As a consequence, these materials are brittle. Although […]

September 18th, 2019

Predicting optimal glass compositions

For glass scientists, the periodic table is their oyster—virtually all elements turn into a glass if quenched fast enough. Yet […]

August 27th, 2019

$1.5 million grant to design a 3D-printable CO2-neutral concrete

A team of UCLA engineers has received a $1.5 million grant from the National Science Foundation to develop 3-D-printed concrete […]

July 30th, 2019

Overcoming the brittleness of glass

From windows to tableware to fiber optics, oxide glasses are everywhere you look. Oxide glasses (typically silica) are used frequently […]

July 29th, 2019

Universal density-stiffness scaling laws: From cellular solids to atomic networks

Many natural materials offer unusual mechanical performances. Natural cellular materials like bones simultaneously exhibit low weight and superior mechanical properties […]

July 21st, 2019

Postdoc Position in Machine Learning and Additive Manufacturing

The Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab) at University of California, Los Angeles (UCLA) is seeking some outstanding […]

July 19th, 2019

Multiple postdoc positions in atomistic simulations of disordered materials

The Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab) at University of California, Los Angeles (UCLA) is seeking some outstanding […]

July 19th, 2019

Multiple postdoc positions in machine learning and materials informatics

The Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab) and Laboratory for the Chemistry of Construction Materials (LC2) at University […]

June 22nd, 2018

Multiple Ph.D. positions in computational material science

The Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab) at University of California, Los Angeles (UCLA) is seeking some outstanding […]