List
Puerta-Falla, Guillermo, Aditya Kumar, Lauren Gomez-Zamorano, Mathieu Bauchy, Narayanan Neithalath, and Gaurav Sant. 2015. "The influence of filler type and surface area on the hydration rates of calcium aluminate cement." Construction and Building Materials, 96, 657-665.


Puerta-Falla, Guillermo, Aditya Kumar, Lauren Gomez-Zamorano, Mathieu Bauchy, Narayanan Neithalath, and Gaurav Sant. 2015. "The influence of filler type and surface area on the hydration rates of calcium aluminate cement." Construction and Building Materials, 96, 657-665.
"The addition of finely pulverized materials such as limestone and quartz has been observed to increase the reaction rates of ordinary portland cement. This study describes the effects of mineral fillers including: limestone, dolomite and quartz on the hydration rates of calcium aluminate cements. By detailed analysis of isothermal calorimetry data and application of a phase boundary nucleation and growth model, it is shown that finely ground minerals enhance reaction rates in relation to: (1) their surface area, which increases with increasing proportion of CAC replacement by a fine mineral filler, and (2) the increase in the amount of water available for CAC hydration, i.e., dilution, that occurs as the CAC is replaced by a filler. Unlike in the case of OPC, CAC hydration rates, and enhancements therein in the presence of fillers are independent of the mineral type and are only a function of available surface area."

Leave a Reply

Your email address will not be published. Required fields are marked *

  Posts

1 2 3 9
January 27th, 2020

Climate-Smart Cement is Being Developed in California

Cement and concrete (the most manufactured materials in the world) account today for about 8 percent of the world’s total […]

November 11th, 2019

Designed crack-resistant cesium aluminoborate glass heals under hydration

Oxide glasses are disordered molecular structures and typically show poor intrinsic ductility. As a consequence, these materials are brittle. Although […]

September 18th, 2019

Predicting optimal glass compositions

For glass scientists, the periodic table is their oyster—virtually all elements turn into a glass if quenched fast enough. Yet […]

August 27th, 2019

$1.5 million grant to design a 3D-printable CO2-neutral concrete

A team of UCLA engineers has received a $1.5 million grant from the National Science Foundation to develop 3-D-printed concrete […]

July 30th, 2019

Overcoming the brittleness of glass

From windows to tableware to fiber optics, oxide glasses are everywhere you look. Oxide glasses (typically silica) are used frequently […]

July 29th, 2019

Universal density-stiffness scaling laws: From cellular solids to atomic networks

Many natural materials offer unusual mechanical performances. Natural cellular materials like bones simultaneously exhibit low weight and superior mechanical properties […]

July 21st, 2019

Postdoc Position in Machine Learning and Additive Manufacturing

The Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab) at University of California, Los Angeles (UCLA) is seeking some outstanding […]

July 19th, 2019

Multiple postdoc positions in atomistic simulations of disordered materials

The Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab) at University of California, Los Angeles (UCLA) is seeking some outstanding […]

July 19th, 2019

Multiple postdoc positions in machine learning and materials informatics

The Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab) and Laboratory for the Chemistry of Construction Materials (LC2) at University […]

June 22nd, 2018

Multiple Ph.D. positions in computational material science

The Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab) at University of California, Los Angeles (UCLA) is seeking some outstanding […]